Product Details
Teach electrochemistry in a very unique way as students learn about Galvanic and electrolytic cells with this kit! From a few simple materials—soaked filter papers, metal strips and an LED—students build their very own tiny battery. When the battery components are arranged correctly, the red LED glows. An introductory video discusses the main principles of the activity, and a wrap-up video solidifies the concepts. Prepare the amaze your students!
Individual Flinn blended Learning Solution Kits include experiment supplies and 1 year of digital content access to one lab for 30 users. Digital features include:
- Anytime, anywhere digital access to prelab, technique and summary videos that help students focus on understanding core chemical concepts and progress through experiments independently.
- Digital procedures optimized to work, with embedded assessments and real sample data and enough materials for 24–30 students working in small groups to complete each experiment
- Unique takes on core chemistry concepts and clear connections to the things students experience in their everyday lives.
- Virtual reality simulations that place students “inside the beaker” to connect the atomic and macroscopic scales and browser-based simulations that allow students to generate digital emission spectra and pH indicator tables.
- Built-in safety training—videos and assessments on pre-lab safety, proper PPE, safety equipment, procedure safety, chemical disposal, hazard recognition and emergency response.
Correlation to Next Generation Science Standards (NGSS)†
Science & Engineering Practices
Developing and using models
Planning and carrying out investigations
Constructing explanations and designing solutions
Obtaining, evaluation, and communicating information
Disciplinary Core Ideas
HS-PS1.A: Structure and Properties of Matter
HS-PS1.B: Chemical Reactions
HS-ETS1.B: Developing Possible Solutions
HS-ETS1.C: Optimizing the Design Solution
Crosscutting Concepts
Patterns
Performance Expectations
HS-PS1-2. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
HS-PS1-4. Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.
HS-PS1-5. Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.
HS-PS1-6. Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.